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Introduction. Glueballs: theory and experiment

The process γ+γ→ G(2++)+π0 as an 
opportunity to study tensor glueball

Discussion: questions, suggestions, 
critics, skepticism, etc.
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Table 1: A modified reproduction of the table from the 2006 Particle Data Book [9] showing the current
assignment of known mesons to quark-model states. When su�cient states are known, the nonet mixing
angle is computed using both the quadratic and linear forms.

mixing angle. We can compute a �2 between the measured and predicted decay rates to determine
what the optimal choice of the mixing angle is. This is shown in Figure 3, where the optimal value
is at about 32.5�. The location of the optimum does not depend strongly on either ✓

P

or � and is in
good agreement with the values from the mass formulas for the tensors in Table 1. In fact, it is quite
surprising how well this does in describing the data.

Measuring the masses and decay rates of mesons can be used to identify the quark content of a
particular meson. The lightest glueballs have JPC quantum numbers of normal mesons and would
appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.

3 Theoretical Expectations for Glueballs

3.1 Historical

One of the earliest models in which glueball masses were computed is the bag model [12]. In these
early calculations, boundary conditions were placed on gluons confined inside the bag [13]. The gluon
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Figure 1: SU(3)
flavor

nonet of the lightest pseudoscalar mesons (JPC = 0�+). The light u, d and s quarks
and their corresponding antiquarks ū, d̄ and s̄ form the basis for 9 = 3 ⌦ 3 mesons. These are the
illustrated octet (left) and the ⌘

1

singlet (right).

we find the following quantum numbers are allowed:

0�+, 0++, 1��, 1+�, 1��, 2��, 2�+, 2++, 3��, 3+�, 3��, · · · (1)

and looking carefully at these, we find that there is a sequence of JPC ’s which are not allowed for a
simple qq̄ system:

0��, 0+�, 1�+, 2+�, 3�+, · · · (2)

These latter quantum numbers are known as explicitly exotic quantum numbers and, if observed, would
correspond to something beyond the simple qq̄ states of the quark model.

If we consider only the three lightest quarks, u, d and s, then we can form nine qq̄ combinations,
all of which can have the same S, L and J . We can represent these in spectroscopic notation, 2S+1L

J

,
or as states of total spin, parity and for the neutral states, charge conjugation: JPC . Naively, these
qq̄ combinations would simply be a quark and an antiquark. However, those states consisting of the
same quark and antiquark (uū, dd̄ and ss̄) are rotated into three other states based on isospin and
SU(3) symmetries. The combinations shown in equation 3 correspond the the non-zero isospin states,
while those in equation 4 correspond to a pair of isospin zero states. The latter two states are also
mixed by SU(3) to yield a singlet (| 1 i) and an octet (| 8 i) state:
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The nominal mapping of these states onto the familiar pseudoscalar mesons is shown in Fig. 1.
However, because SU(3) is broken, the two I = 0 mesons in a given nonet are usually admixtures of
the singlet ( | 1 i = 1p

3

�
uū + dd̄ + ss̄

�
) and octet ( | 8 i = 1p

6

�
uū + dd̄� 2ss̄

�
) states. In nature, the

physical states (f and f 0 ) are mixtures, where the degree of mixing is given by an angle ✓:

f = cos ✓ | 1 i+ sin ✓ | 8 i (5)

f 0 = cos ✓ | 8 i � sin ✓ | 1 i . (6)

For the vector mesons, ! and �, one state is nearly pure light-quark (nn̄) and the other is nearly
pure ss̄. This is known as ideal mixing and occurs when tan ✓ = 1/

p
2 (✓ = 35.3�). In Table 1 is listed
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Figure 2: The decay amplitude, �2, as a function of the nonet mixing angle, ✓. (a) is for f decays while
(b) is for f 0 decays. In this particular example, the pseudoscalar mixing angle is taken as ✓
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our current picture of the ground state mesons for several di↵erent L ’ s. The last two columns list the
linear (equation 7) and quadratic (equation 8) calculations of the mixing angle for the nonets:
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The mixing angle ✓ can also be used to compute relative decay rates to final states such as pairs of
pseudoscalar mesons, or two-photon widths, for the f and f 0 in a given nonet. Examples of this can
be found in reference [9] and references therein. The key feature is that for a given nonet, the f and f 0

states can be identified by looking at the relative decay rates to pairs of particles.
As an example of a decay calculation, we consider the decay of the tensor (JPC = 2++) mesons to

pairs of pseudoscalar mesons (⇡⇡, KK̄ and ⌘⌘). Following the work in references [9–11] and using the
decay rates in reference [8], we can compute a decay constant � from the SU(3) algebra corresponding
to the decays. This can then be turned into a decay rate, �, as in equation 9:

� = �2 · f
L

(q) · q , (9)

where q is the break-up momentum of the meson into the pair of daughter mesons. The amplitude �
depends on the nonet mixing angle and the pseudoscalar mixing angle, ✓

P

. A typical example is given
in Figure 2 which is shown in terms of an arbitrary scale factor. The quantity f

L

is a form factor that
depends on the angular momentum, L, between the pair of daughter mesons. The choice of the form
factor is model dependent – where monopole or dipole forms are usually taken. Here, we have taken a
very model-dependent form as given in equation 10 which is limited in validity to small values of q:

f
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(q) = q2Le
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8�2 . (10)

In this form, � is a constant that is in the range of 0.4 to 0.5 GeV/c. One can fit the ratio of decay
rates to pairs of mesons for both the f
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(1270) and the f 0
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(1525) and fit to the best value of the nonet
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appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.

3 Theoretical Expectations for Glueballs

3.1 Historical

One of the earliest models in which glueball masses were computed is the bag model [12]. In these
early calculations, boundary conditions were placed on gluons confined inside the bag [13]. The gluon

6

Crede, Mayer, 2009Measuring the masses and decay rates of mesons can be 
used to identify the quark content of a  particular meson



Glueballs gg-state 

The lightest glueballs have JPC quantum numbers of normal mesons and would appear as 
an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will 
appear as an extra f-like state.  While the fact that there is an extra state is suggestive, the 
decay rates and production mechanisms  are also needed to unravel the quark content of 
the observed mesons. Crede, Mayer, 2009
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Figure 1. Mass spectrum of glueballs (in GeV on r.h.s.) for different quantum
numbers PC according to the quenched lattice calculations (figure from [18]).

has to be taken as input, such as the “string tension” or the “Sommer scale” 1/r0 ∼ 400

MeV [14].

As examples of recent lattice calculations from first principles, we mention the

results in full QCD on the conventional light hadron spectrum by the Budapest-

Marseilles-Wuppertal Collaboration [15] who has calculated the masses of the baryon
octet and decuplet states as well as the masses of some light mesons within a few

percent of accuracy. Here the masses of π, K and Ξ particles have been used to fix the

masses of light and strange quarks at their physical values as well as the overall mass

scale. Another result, obtained by the “Hadron Spectrum Collaboration” [16] concerns

the spectrum of lightest and the first excited isoscalar meson states which includes

quark-annihilation contributions. Remarkably, the mixing pattern of these mesons is
reproduced close to observations.

More difficult to compute is the spectrum of glueballs in full QCD, as these states are

heavier and therefore need higher statistics, in particular the scalar states with vacuum

quantum numbers have extra contributions difficult to disentangle. In full QCD there

is a mixing of gluonic and fermionic degrees of freedom, correspondingly one inserts

gluonic and fermionic operators for the relevant correlation functions. For sufficiently
light quark (pion) masses the glueball can decay into a meson pair which has to be

included in the consideration as well.

The spectrum of glueballs has been calculated at first within the pure (Yang-Mills)

gluon theory without quarks (“quenched approximation”). The lightest glueballs are

The mass spectrum of glueballs 
 from  lattice

fluctuation of a gluon into a quark-antiquark pair is left out. As computer power continues to increase,
and more e�cient ways of carrying out calculations evolve, this is starting to change.

There is also a lattice artifact that can a↵ect the mass calculations of the scalar glueball [36]. A
singularity not related to QCD can cause the mass of the scalar glueball to be artificially small. This
e↵ect is particularly apparent when Wilson fermions are used with too-large a lattice spacing. Other
choices are less sensitive to this, and when the lattice spacing is small enough, the e↵ect does go away.
However, for Wilson fermions, the critical value of � is 5.7, which is very close to the values used in
many glueball calculations.

Some of the earliest lattice calculations of the glueball spectrum were carried out in the quenched
approximation on relatively small lattices [37, 38]. These calculations indicated that the mass of the
lightest glueball spectrum started at about 1.5 GeV/c2. As both computational resources increased
and the lattice actions and methods improved, calculations on a larger lattice were carried out, and the
spectrum of the states began to emerge [39]. After extrapolating to the continuum limit, the lightest
three states emerge as the scalar (JPC = 0++), tensor (JPC = 2++) and the pseudoscalar (JPC = 0�+),
with the scalar around 1.55 ± 0.05 GeV/c2, the tensor at 2.27 ± 0.1 GeV/c2 and the pseudoscalar at
about the same mass. It was also possible to identify a number of other states with the first exotic
(non-qq̄) quantum number state above 3 GeV/c2.

A later calculation using a larger lattice and smaller lattice parameters yielded a mass for the scalar
glueball of 1.625 ± 0.094 GeV/c2 [40, 41]. The authors also calculated the decay of the scalar glueball
to pairs of pseudoscalar mesons and estimated that the total width of the glueball would be under
0.2 GeV/c2. They also found that the decay width of the scalar glueball depended on the mass of
the daughter mesons, with coupling increasing with mass. This was in contradiction to the lore that
glueballs should decay in a flavor-blind fashion with the coupling to pairs of pseudoscalar mesons being
independent of flavor or mass. Other work has followed this in discussions of violations of flavor-blind
decays [42,43]. This breaking is (e↵ectively) accomplished by introducing a parameter, r, in the matrix
that mixes quarkonium with glueballs. For flavor blind decays, r = 1. Values that are close to 1 are
typically found. On the lattice [40, 41], it is found that r = 1.2 ± 0.07, while a fit to data [42] finds

JPC M
G

(GeV/c2)

0++ 1.710(.050)(.080)

2++ 2.390(.030)(.120)

0�+ 2.560(.035)(.120)

1+� 2.980(.030)(.140)

2�+ 3.040(.040)(.150)

3+� 3.600(.040)(.170)

3++ 3.670(.050)(.180)

1�� 3.830(.040)(.190)

2�� 4.010(.045)(.200)

3�� 4.200(.045)(.200)

2+� 4.230(.050)(.200)

0+� 4.780(.060)(.230)

Table 5: The glueball mass spectrum in physical units. For the mass of the glueballs (M
G

), the first error
comes from the combined uncertainty of r

0

M
G

, the second from the uncertainty of r�1

0

= 410(20) MeV.
Data are taken from [35].
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Identifying glueballs gg-state 

Conclusions from theory

There is a general agreement in that the lightest gluonic 
state has quantum numbers JPC = 0++. One state is 
located around 1.4-1.7 GeV

Therefore, the search for the scalar gluonic states looks 
particularly promising despite the experimental and 
theoretical uncertainties.

The next heavier states are expected with quantum numbers 
JPC=2++ and with masses ≳2 GeV. Experimental analyses 
have been difficult so far in this mass region. 

W. Ochs, J.Phys. G40 (2013)



Production of glueballs in gluon-rich processes

r = 1 ± 0.3. Finally, in a microscopic quark/gluon model [43], r = 1.1 � 1.2 is determined. Taken
together, one should probably expect small violations of flavor-blind decays for glueballs, but not large.

Using an improved action, detailed calculations for the spectrum of glueballs were carried out by
Morningstar and colleagues [35,44]. These are shown in Figure 4 and the corresponding masses reported
in Table 5. These calculations are currently the state of the art in lattice glueball mass predictions.

Hart and Tepper [45] carried out an unquenched calculation of the scalar and tensor glueballs using
Wilson fermions. They found that the tensor mass did not move, while the scalar mass came out at
about 85% of the unquenched mass. McNeile [46] speculates that this may be a result of the lattice
artifact mentioned above. A later study by Hart and colleagues [47] seems to confirm that the mass
of the glueball may be pushed down significantly for unquenched calculations. However, the authors
point out that the e↵ect may be due to the lattice artifact, but feel that this is not the case. Another
concern arises due to the small pion mass which opens up the two-pion threshold. No explicit two-
pion operators were included in the calculation and it is possible that the mass reduction is related to
missing operators. In another unquenched calculation, Gregory [48] found that unquenching the lattice
calculations for glueballs appears not to significantly alter the results from unquenched calculations.
Given the di�culty of the unquenched glueball calculation, we note that at this time it is di�cult to
know what the true situation is and look forward to better calculations in the future.

4 Experimental Methods and Major Experiments

Results on meson spectroscopy have come from a large variety of experiments using di↵erent experi-
mental techniques. Production of glueballs has mainly been predicted for glue-rich environments [49].
The most promising examples are proton-antiproton annihilation, central pp collisions through double-
Pomeron exchange or radiative decays of quarkonia, where one of the three gluons arising from the
quark-antiquark annihilation is replaced by a photon leaving two gluons to form bound states. The
most prominent example is the radiative decay J/ ! �G [19,20]. Fig. 5 shows some diagrams of gluon-
rich processes. The following sections describe the main experimental methods and major experiments
devoted to the study of meson resonances and the search for glueballs.

4.1 Proton-Antiproton Annihilation

In pp̄ annihilations, glueballs may be formed when quark-antiquark pairs annihilate into gluons. Though
not very likely, this may proceed via formation (as opposed to production) without a recoil particle; in
this case, exotic quantum numbers are forbidden and the properties of the glueball candidate can be

Figure 5: Feynman diagrams describing glue-rich production mechanisms in favor of glueball formation:
radiative J/ decays, Pomeron-Pomeron collisions in pp central production, and proton-antiproton
annihilation. Picture taken from [6].
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Central production of mesons:
“double Pomeron exchange” 
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pp annihilation-16

Figure 4. Processes favouring glueball G production, where J/ψ and Υ are
respectively the lowest mass cc̄ and bb̄ mesons with JPC = 1−−.

(ii) Central production of mesons: In double diffractive high energy processes the

incoming hadrons scatter with small momentum transfers and carry on the initial
valence quarks. In Regge theory this process is dominated by “double Pomeron

exchange”. If the Pomeron is viewed as a gluon dominated object then glueball

production is enhanced in this reaction (pp → p gb p). The different contributing

processes within QCD have been discussed in [47].

(iii) pp̄ annihilation: The annihilation of quarks may proceed through intermediate
gluons and the formation of glueballs (pp̄→ gb+M).

(iv) Decay of excited heavy quarkonium Y (n) to ground state Y : In the example

Y (n) → Y +X the hadrons X are emitted from intermediate gluons and therefore

could be formed through an intermediate glueball.

(v) Decay of heavy quark b → sg: This QCD process (through “penguin” diagram)
may hadronize involving a glueball according to B → Kgb [48].

(vi) Leading particle in gluon jet: In analogy to the fragmentation of the primary quark q

of a q-jet into an energetic meson M(qq̄′) which carries q as valence quark, there may

be the fragmentation of the primary gluon of a gluon jet into an energetic meson

M(gg) which carries the initial gluon as valence gluon g → gb+X (section 9).

3.2.2. Suppression of glueballs in γγ processes. Having neutral constituents a glueball

couples to photons only through loop processes and then it is suppressed in γγ reactions.

3.3. Supernumerous states among qq̄ nonets?

Mesons with light quark constituents (u, d, s quarks) are classified in nonets of 3 × 3

states (octet+singlet). A well known example is the pseudoscalar nonet of lowest mass

with π, K, η near flavour octet and η′ near singlet. It is the aim of meson spectroscopy

to establish the appropriate classification of mesons. They should fit into nonets of qq̄

states - possibly, there are also exotic states like tetra-quark qqq̄q̄ or hybrid qq̄g states.
If there are glueballs in addition there should be supernumerous states which do not fit

into a nonet classification of the meson spectrum.

Decay of excited heavy quarkonium 
Y(n) to ground state Y 

Glueball in γγ collisions
a glueball couples to photons only through 
loop processes and then it is suppressed 

in γγ reactions 
W. Ochs, J.Phys. G40 (2013)



Experimental evidence for tensor glueballs

BES III, Ablikim et al,  PRD 93(2016)Experiment

first observed in ⇡� + p ! ��n

Etkin et al, PRL(1978), PLB(1985), PLB(1988)
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in the NLL value and the number of free parameters in
the fit with and without a resonance are used to evalu-
ate its statistical significance. In the baseline solution,
there are three 0−+ resonances (η(2225), η(2100), and
X(2500)), one 0++ resonance (f0(2100)), three 2++ reso-
nances (f2(2010), f2(2300), and f2(2340)), and the direct
decay of J/ψ → γφφ, which is modeled by a 0−+ phase
space distribution (0−+ PHSP) of the φφ system. The
statistical significance of each component in the baseline
solution is larger than 5 σ. The masses and widths of the
three 0−+ resonances are free parameters in the fit. The
resonance parameters of the 0++ and 2++ resonances are
fixed to the PDG [25] values due to limited statistics. The
masses and widths of the resonances, product branching
fractions of J/ψ → γX , X → φφ, and the statistical
significances are summarized in Table I, where the first
errors are statistical, and the second ones are systematic.
The fit fraction of each component and their interference
fractions are shown in Table II. Figure 2(a) shows a com-
parison of the data and the PWA fit projection (weighted
by MC efficiencies) of the invariant mass distributions of
φφ for the fitted parameters. The comparisons of the pro-
jected data and MC angular distributions for the events
with φφ invariant mass less than 2.7 GeV/c2 are shown
in Fig. 2(b)−2(e). The χ2/nbin value is displayed on each
figure to demonstrate the goodness of fit, where nbin is
the number of bins of each figure and χ2 is defined as:

χ2 =
nbin
∑

i=1

(ni − νi)2

νi
, (15)

where ni and νi are the number of events for the data
and the fit projections with the baseline solution in the
ith bin of each figure, respectively.

TABLE I. Mass, width, B(J/ψ → γX → γφφ) (B.F.) and
significance (Sig.) of each component in the baseline solu-
tion. The first errors are statistical and the second ones are
systematic.

Resonance M(MeV/c2) Γ(MeV/c2) B.F.(×10−4) Sig.

η(2225) 2216+4
−5

+21
−11 185+12

−14
+43
−17 (2.40 ± 0.10+2.47

−0.18) 28 σ

η(2100) 2050+30
−24

+75
−26 250+36

−30
+181
−164 (3.30 ± 0.09+0.18

−3.04) 22 σ

X(2500) 2470+15
−19

+101
−23 230+64

−35
+56
−33 (0.17 ± 0.02+0.02

−0.08) 8.8 σ

f0(2100) 2101 224 (0.43 ± 0.04+0.24
−0.03) 24 σ

f2(2010) 2011 202 (0.35 ± 0.05+0.28
−0.15) 9.5 σ

f2(2300) 2297 149 (0.44 ± 0.07+0.09
−0.15) 6.4 σ

f2(2340) 2339 319 (1.91 ± 0.14+0.72
−0.73) 11 σ

0−+ PHSP (2.74 ± 0.15+0.16
−1.48) 6.8 σ

Various checks are performed to test the reliability
of the model-dependent PWA solution. Replacing the
pseudoscalar state η(2100) by either η(2010) [29] or
η(2320) [30] worsens the NLL values by 21.2 and 33.0,
respectively. The spin-parity assignment JPC of the

X(2500) as 0−+ is significantly better than the 0++ hy-
pothesis, with the NLL value improving by 44.1 units.
Changing the spin-parity assignment of the X(2500) to
2++, resulting in 10 additional free parameters, wors-
ens the NLL value by 0.5, instead. Therefore, the pre-
ferred assignment for the X(2500) is pseudoscalar. If we
replace the two tensor states f2(2300) and f2(2340) by
a single one with free resonance parameters in the fit,
the NLL value is worsened by 14.7. In this case, a sta-
tistical significance test of the f2(2340) yields a value
of 6.1 σ. The narrow fJ(2220) (alternatively known
as the ξ(2230)), which was seen in J/ψ → γK+K−

at MarkIII [31] and BES [32], but not seen in J/ψ →
γK0

SK
0
S at CLEO [33], is also studied. When included

in the PWA, the statistical significance of the fJ (2220)
is found to be 0.8 σ. The upper limit on the branching
fraction ratio B(ξ(2230)→ φφ)/B(ξ(2230) → K+K−) at
the 90% C.L. is estimated to be 1.91 × 10−2. For the
description of the nonresonant contribution, the statisti-
cal significance of additional non-resonant contributions
with JPC = 0++ or 2++ is less than 5 σ. Additional
resonances listed in Ref. [25] as well as two extra states,
the X(2120) and X(2370) from Ref. [34], are tested with
all possible JPC assignments. None of them has a statis-
tical significance larger than 5 σ, as shown in Table III.
The existence of possible additional resonances is further
studied by performing scans for extra resonances (JPC =
0−+, 0++, 1++, 2−+, 2++ and 4++) with different masses
and widths. The scan results yield no evidence for extra
intermediate states. The reliability of the fit procedure
is tested by an input-output check, as follows: An MC
sample is generated with given components. After the
fitting procedure described above, the properties of the
components (mass, width, branching fraction, and the
effect of interference terms) are compared with the input
values. The output values agree with the input around
±1 σ, confirming the reliability of the fitting procedure.
In addition to the PWA fit with resonances described

by BW functions, a model-independent fit where the in-
termediate states are parameterized by a separate com-
plex constant for each of 35 bins of 20 MeV/c2 width is
performed in the region M(φφ) < 2.7 GeV/c2 to extract
the contribution of components with each JPC using the
method described in Ref. [35]. The fit results are shown
in Fig. 2(f). The 0−+ contribution is dominant, and a
strong 2++ component at 2.3 GeV/c2 is observed. In
general, the model-independent fit gives similar features
to those of the model-dependent fit, and the results of
these two fits are consistent with each other.

V. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainty are divided into
two categories. The first includes the systematic uncer-
tainties from the number of J/ψ events (0.8% [36, 37]),
MDC tracking (1.0% each for three charged tracks [38]),
kaon PID (1.0% each for three kaons [38]), photon detec-
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±1 σ, confirming the reliability of the fitting procedure.
In addition to the PWA fit with resonances described

by BW functions, a model-independent fit where the in-
termediate states are parameterized by a separate com-
plex constant for each of 35 bins of 20 MeV/c2 width is
performed in the region M(φφ) < 2.7 GeV/c2 to extract
the contribution of components with each JPC using the
method described in Ref. [35]. The fit results are shown
in Fig. 2(f). The 0−+ contribution is dominant, and a
strong 2++ component at 2.3 GeV/c2 is observed. In
general, the model-independent fit gives similar features
to those of the model-dependent fit, and the results of
these two fits are consistent with each other.

V. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainty are divided into
two categories. The first includes the systematic uncer-
tainties from the number of J/ψ events (0.8% [36, 37]),
MDC tracking (1.0% each for three charged tracks [38]),
kaon PID (1.0% each for three kaons [38]), photon detec-

PDG

✓
✓
✓

Lattice:  f2(2340) might be glueballChen et al, PRL 111(2013) 
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TABLE II. Fraction of each component and interference fractions between two components (%) in the baseline solution. The

errors are statistical only.

Resonance η(2100) η(2225) X(2500) 0−+ PHSP f0(2100) f2(2010) f2(2300) f2(2340)

η(2100) 54.2±1.5 43.5±1.2 15.2±1.0 −64.0±2.2 0.0±0.0 0.0±0.0 0.0±0.0 −0.1±0.0

η(2225) 41.0±1.6 15.9±0.7 −60.6±1.7 0.0±0.0 0.0±0.0 0.1±0.0 −0.1±0.0

X(2500) 3.2±0.3 −15.7±1.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

0−+ PHSP 42.8±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

f0(2100) 6.5±0.6 0.1±0.0 0.1±0.0 −0.5±0.0

f2(2010) 5.9±0.8 6.0±0.7 −18.6±1.6

f2(2300) 8.8±1.4 −22.0±3.5

f2(2340) 38.4±2.8
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FIG. 2. Superposition of data and the PWA fit projections for: (a) invariant mass distributions of φφ; (b) cos θ of γ in the
J/ψ rest frame; (c) cos θ of φ1 in the X rest frame; (d) cos θ of K+ in the φ1 rest frame; (e) the azimuthal angle between
the normals to the two decay planes of φ in the X rest frame. Black dots with error bars are data with background events
subtracted and the solid red lines are projections of the model-dependent fit. (f) Intensities of individual JPC components.
The red dots, blue boxes and green triangles with error bars are the intensities of JPC = 0−+, 0++ and 2++, respectively,
from the model-independent fit in each bin. The short-dashed, dash-dotted and long-dashed histograms show the coherent
superpositions of the BW resonances with JPC = 0−+, 0++ and 2++, respectively, from the model-dependent fit.

tion efficiency (1.0% [38]), kinematic fit (2.5%), φ mass
resolution (0.3%) and Bφ→K+K− (2.0%). These system-
atic uncertainties are applicable to all the branching frac-
tion measurements. The total systematic uncertainty
from these sources is 5.5%. The second source concerns
the PWA fit procedure, where the systematic uncertain-
ties are applicable to measurements of the branching frac-
tions and resonance parameters. These sources of sys-
tematic uncertainties are described below.

(i) BW parametrization. Uncertainties from the BW
parametrization are estimated by the changes in
the fit results caused by replacing the fixed width
Γ0 of the BW for the threshold states η(2100)
and η(2225) with a mass-dependent width form
Γ(m) [39].

(ii) Uncertainty from resonance parameters. In the
nominal fit, the resonance parameters of the 0++

and 2++ states are fixed. An alternative fit is per-

f2

J/ψ

0-+

2++

0++
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Fig. 26. Result of the f2– f0 fit (solid line) superimposed on the integrated cross section (for | cos θ∗| ≤ 0.8).
The fitted results of |S|2 (dotted line), |D0|2 (dashed line), |D2|2 (dot-dashed line), and |G2|2 (long-dashed
line) are also shown.

Fig. 27. Differential cross section and the fitted results of the f2– f0 fit (solid line) at the W bins indicated
in each panel. The contributions of |S|2 (dotted line), |D0|2 (dashed line), |D2|2 (dot-dashed line), and |G2|2
(long-dashed line) are also shown.

1525.3+1.2+3.7
−1.4−2.1 MeV/c2, 82.9+2.1+3.3

−2.2−2.0 MeV, and 48+67
−8

+108
−12 eV, respectively. The systematic uncer-

tainty of "γγB(K K̄ ) is fairly large. Nevertheless, this is the first measurement of this parameter that
includes the interference with a non-resonant amplitude.
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Glueball or qq-state ?-

Experimental evidence for tensor glueballs

Probably this  indicates 
that this meson is qq-
state of have large qq-
component   

-
-



Can we learn smth about glueballs in hard 
exclusive reactions?

Advantages the amplitude sensitive to the wave functions
(distribution amplitudes)  

strong coupling to gluonic component of WF must be 
observed 

mixing with quarks is well understood (QCD evolution) 

special case spin-2: there is gluonic DA which does not 
mix with quarks (QCD evolution)   

mixing still can be problematic for interpretation  if 
hadron is qq and gg state (depends on the concrete 
process)  

small cross sections at large hard scale Q2

-

Disadvantages

which reactions can be suggested? 



Light-cone distribution amplitudes

describes the momentum-fraction distribution of partons at zero 
transverse separation in a 2-particle Fock state

suppressed by powers of 1/Q:
multiparticle states: qqg-
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Table 1: A modified reproduction of the table from the 2006 Particle Data Book [9] showing the current
assignment of known mesons to quark-model states. When su�cient states are known, the nonet mixing
angle is computed using both the quadratic and linear forms.

mixing angle. We can compute a �2 between the measured and predicted decay rates to determine
what the optimal choice of the mixing angle is. This is shown in Figure 3, where the optimal value
is at about 32.5�. The location of the optimum does not depend strongly on either ✓

P

or � and is in
good agreement with the values from the mass formulas for the tensors in Table 1. In fact, it is quite
surprising how well this does in describing the data.

Measuring the masses and decay rates of mesons can be used to identify the quark content of a
particular meson. The lightest glueballs have JPC quantum numbers of normal mesons and would
appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.

3 Theoretical Expectations for Glueballs

3.1 Historical

One of the earliest models in which glueball masses were computed is the bag model [12]. In these
early calculations, boundary conditions were placed on gluons confined inside the bag [13]. The gluon
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The integral of the DA ga(u) vanishes
∫ 1

0
du ga(u) = 0 , (3.9)

and the first nonzero (second) moment,
∫ 1
0 du (2u − 1)2ga(u), involves contributions of

three-particle operators, see below.

The coupling fq is defined as the matrix element of the local operator

1

2
⟨f2(P,λ)|q̄

[
γµi

↔
Dν +γνi

↔
Dµ

]
q|0⟩ = fqm

2e(λ)∗µν (3.10)

where
↔
Dµ=

→
Dµ −

←
Dµ is the covariant derivative. This coupling is scale dependent and gets

mixed with the gluon coupling and the similar coupling for strange quarks. In appendix B

we summarize the scale dependence of all DA parameters introduced in this section.

The numerical value of fq has been estimated in the past [23–25] (see also appendix D)

using the QCD sum rule approach. Another possibility is to use the experimental result

on the decay width Γ(f2 → ππ) and estimate fq assuming that the matrix element of the

energy-momentum tensor ⟨π+π−|Θµν |0⟩ is saturated by the tensor meson [23–27]. These

two estimates agree with each other surprisingly well, although this agreement should not

be overrated as in both cases the non-resonant two-pion background is not taken into

account. We use (cf. [23] and appendix D)

fq = 101(10) MeV (3.11)

(at the scale 1GeV) as the default value for the present study. Note that the positive

sign for this coupling is a phase convention, whereas the relative signs of the other matrix

elements with respect to fq are physical and can be determined by considering suitable

correlation functions as explained in appendix D.

Using the definitions in (3.3) it is easy to derive the operator product expansion (OPE)

of quark bilinears close to the light cone x2 → 0 (at the tree level):

⟨f2(P,λ)|q̄(x)γµq(−x)|0⟩

= fqm
2 e(λ)∗xx

(Px)2
Pµ

∫ 1

0
du ei(2u−1)(Px)

[
φ2(u)− gv(u) +

1

4
x2m2φ4(u)

]

+ fqm
2 e

(λ)∗
µx

Px

∫ 1

0
du ei(2u−1)(Px) gv(u)

+
1

2
fqm

4xµ
e(λ)∗xx

(Px)3

∫ 1

0
du ei(2u−1)(Px)

[
2gv(u)− φ2(u)− g4(u)

]
,

⟨f2(P,λ)|q̄(x)γµγ5q(−x)|0⟩

= −ifqm
2ϵµναβ

xνPα

Px

e(λ)∗βx

Px

∫ 1

0
du ei(2u−1)(Px) ga(u) , (3.12)

where φ4(u) is another twist-four two-particle DA that can be expressed in terms of the

other functions using QCD equations of motion (EOM), see below.

– 6 –

normalization constant
Aliev, Shifman 1982 (QCD SR, TM dom.)

Cheng, Koike, Yang 2010 (QCD SR, TM dom.)

Terazawa, 1990/ Suzuki 1993 (TM dom.)

f⇡ = 130MeV f⇢ = 221MeV f! = 198MeV

for comparison

fu(1GeV) = fd(1GeV) = 101(10)MeV

fs(1GeV) ⇡ 0
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assignment of known mesons to quark-model states. When su�cient states are known, the nonet mixing
angle is computed using both the quadratic and linear forms.

mixing angle. We can compute a �2 between the measured and predicted decay rates to determine
what the optimal choice of the mixing angle is. This is shown in Figure 3, where the optimal value
is at about 32.5�. The location of the optimum does not depend strongly on either ✓

P

or � and is in
good agreement with the values from the mass formulas for the tensors in Table 1. In fact, it is quite
surprising how well this does in describing the data.

Measuring the masses and decay rates of mesons can be used to identify the quark content of a
particular meson. The lightest glueballs have JPC quantum numbers of normal mesons and would
appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.

3 Theoretical Expectations for Glueballs

3.1 Historical

One of the earliest models in which glueball masses were computed is the bag model [12]. In these
early calculations, boundary conditions were placed on gluons confined inside the bag [13]. The gluon
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Figure 5. The leading contribution to the radiative decay Υ(1S) → γf2(1270).

E fS
g from the radiative decay Υ(1S) → γf2

The scalar gluon coupling fS
g can be estimated from the bottomonium decay Υ(1S) →

γf2(1270). The dominant contribution comes from the two-quark QQ̄ component of the

bottomonium wave function; the contribution of higher Fock states is suppressed by the

small relative velocity of the heavy quarks. To the leading-order accuracy the decay am-

plitude is described by the diagram in figure 5. The corresponding calculation was already

done in refs. [47–49]. The result reads
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where ϵ∗γ and ϵΥ are the polarization vectors of the photon and heavy meson, respectively,

mb is the b-quark (pole) mass and R10(0) denotes the radial wave function of Υ(1S) at the

origin. Potentially there could be also a contribution of the transverse DA φT
g (t), but the

corresponding terms cancel to the leading-order accuracy.
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where this dependence cancels. Here we used the notation ISg for the integral
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For the asymptotic DA φS
g (u, µ) = 30u2(1 − u)2 one obtains ISg = 5

4 . The branching

fractions on the l.h.s. of eq. (E.2) are known, see [21]:

Br[Υ(1S) → γ f2] = (1.01± 0.09)× 10−4,

Br[Υ(1S) → e+e−] = (2.38± 0.11)× 10−2 . (E.4)
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mixing angle. We can compute a �2 between the measured and predicted decay rates to determine
what the optimal choice of the mixing angle is. This is shown in Figure 3, where the optimal value
is at about 32.5�. The location of the optimum does not depend strongly on either ✓
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good agreement with the values from the mass formulas for the tensors in Table 1. In fact, it is quite
surprising how well this does in describing the data.

Measuring the masses and decay rates of mesons can be used to identify the quark content of a
particular meson. The lightest glueballs have JPC quantum numbers of normal mesons and would
appear as an SU(3) singlet state. If they are near a nonet of the same JPC quantum numbers, they will
appear as an extra f -like state. While the fact that there is an extra state is suggestive, the decay rates
and production mechanisms are also needed to unravel the quark content of the observed mesons.
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Figure 3: The convolution integrals as a functions of cos ✓. The shaded area between the vertical lines
corresponds to the region where |u|, |t| � 2.5 GeV2 for s = 13 GeV2. The factorisation scale is fixed to
be µ

2 = 3.2 GeV2. For the model of the DAs used to make these predictions, see text.
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Figure 4: The cross section as a function of cos ✓ at s = 13 GeV2 (left) and s = 16 GeV2 (right) in the
region |t|, |u| � 2.5 GeV2. The solid, dashed and dotted lines correspond to fT

g

(1GeV) = 150, 100, 50 MeV,
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⇠ 100 MeV. For the glueball quark coupling f

q

we consider the di↵erent scenarios with f
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g

and f
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corresponding to the small and to the large quark-antiquark component, respectively. Such
scenarios will be described by the following numerical values
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(µ = 1 GeV) ' 100 MeV, (26)
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The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except for flavor mixing and can be found in Ref. [20]. Let us notice that the tensor
gluon DA �

T

g

does not mix under evolution with quark contributions and therefore it describes the genuine
gluon component of the glueball wave function.

The numerical estimates show that the value of the cross section is practically saturated by the
contribution from the amplitude A

++ describing the production of a glueball in the tensor polarisation.
The contribution of the amplitude |A+�| is always about two orders of magnitude smaller for all numerical
values of the couplings f

q

and f

g

shown in Eqs.(25) and (26). Therefore we can conclude that the
contribution with |A+�| does not provide significant numerical impact. Hence the cross section is only
sensitive to the value of tensor coupling f

T

g

. This can also be seen, for instance, from the analysis of the
decay G2 ! �� which can be used for identification of the glueball state.

In Fig.4 we show the cross section as a function of cos ✓ at fixed values of energy s. In the numerical
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
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with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f
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and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f
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(µ = 1 GeV) ' 100 MeV, (27)

f
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(µ = 1 GeV) ' 50� 150 MeV. (28)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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3/2
2 (2y � 1), (20)

with the second moment
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This value is close to many phenomenological estimates and lattice result [18].
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
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which correspond
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|u|, |t| � 2.5GeV2

Figure 1: Kinematics of the process �(q1)�(q2) ! ⇡(k)f2(p).

where we used |A++| = |A��| and |A�+| = |A+�|, and where m denotes the glueball mass. The square
of the amplitudes in (2) implies the sum over polarisations � of the glueball:
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We choose the momenta as �(q1)�(q2) ! ⇡(k)G2(p) and consider the center mass system (cms)
k̄+p̄ = 0 with the pion and glueball momenta directed along z-axis, see Fig.1. Let us also introduce light-
like vectors n = (1, 0, 0,�1) and n̄ = (1, 0, 0, 1) so that (V n) ⌘ V+ = V0 + V3 and (V n̄) ⌘ V� = V0 � V3.
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where ✓ is the scattering angle in the cms, see Fig.1, and where we neglected the small power suppressed
terms.

In the region s ⇠ �t ⇠ �u � ⇤
QCD

the amplitudes can be computed in terms of convolution integrals
of the hard coe�cient function with the mesonic distribution amplitudes. The typical diagrams are shown
in Fig.2. The blobs in Fig.2 denote the light-cone matrix elements which define the DAs of the outgoing
mesons. The pion DA is defined as
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The light-cone matrix element of tensor glueball can be defined in the similar way as for the tensor
meson 2++, see, e.g. Ref. [20]. In general case there are three light-cone matrix elements which define
two gluon DAs and one quark DA. In the quark case the distribution amplitudes is defined as
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1Here p is the exact momentum with p2 = m2.
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take

�

⇡

(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = |I+�
q

(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f

q

⌧ f

g

and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that

|I++
g

| � |I+�
g

| � |I+�
q

|, (24)

and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f

q
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g

and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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⇡

(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f
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for quark-antiquark mesons, i.e. f
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the glueball quark coupling f
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we consider di↵erent scenarios with f
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and f
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which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)
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T
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(µ = 1 GeV) ' 50� 150 MeV. (28)
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Figure 3: The convolution integrals as a functions of cos ✓. The shaded area between the vertical lines
corresponds to the region where |u|, |t| � 2.5 GeV2 for s = 13 GeV2. The factorisation scale is fixed to
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2 = 3.2 GeV2. For the model of the DAs used to make these predictions, see text.
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f

S

g

⇠ f

T
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⇠ 100 MeV. For the glueball quark coupling f

q

we consider the di↵erent scenarios with f

q

⌧ f

g

and f

q

⇠ f

g

corresponding to the small and to the large quark-antiquark component, respectively. Such
scenarios will be described by the following numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (25)

f

g

(µ = 1 GeV) ' 100 MeV, (26)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (27)

The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except for flavor mixing and can be found in Ref. [20]. Let us notice that the tensor
gluon DA �

T

g

does not mix under evolution with quark contributions and therefore it describes the genuine
gluon component of the glueball wave function.

The numerical estimates show that the value of the cross section is practically saturated by the
contribution from the amplitude A

++ describing the production of a glueball in the tensor polarisation.
The contribution of the amplitude |A+�| is always about two orders of magnitude smaller for all numerical
values of the couplings f

q

and f

g

shown in Eqs.(25) and (26). Therefore we can conclude that the
contribution with |A+�| does not provide significant numerical impact. Hence the cross section is only
sensitive to the value of tensor coupling f

T

g

. This can also be seen, for instance, from the analysis of the
decay G2 ! �� which can be used for identification of the glueball state.

In Fig.4 we show the cross section as a function of cos ✓ at fixed values of energy s. In the numerical
calculations we take n

f

= 3 and ↵

s

(m2
⌧

) = 0.297. The cross section are shown for the energy values
s = 13 GeV2 and 16 GeV2. The factorisation scale is fixed to be µ

2 = 3.2 GeV2 and µ

2 = 4 GeV2,
respectively. The values of cos ✓ correspond to the restriction |t|, |u| � 2.5 GeV2. We obtain that for
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In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
been recently observed in Ref. [10] is a good candidate to be glueball state. In our estimates we use the
following models of DAs. For pion DA we take
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(y) ' 6yȳ + 6a2(µ)yȳC
3/2
2 (2y � 1), (20)

with the second moment
a2(µ = 1GeV) = 0.20. (21)

This value is close to many phenomenological estimates and lattice result [18].
For the glueball DAs we take the asymptotic models as for the tensor meson in Ref. [17]
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Let us consider the values of the convolution integrals. In Fig.3 we show the values of the convolution
integrals as a function of cos ✓. Notice that we assume that our approximation for the amplitudes work
reasonably for the angles where |u|, |t| � 2.5GeV2. This region corresponds to the area between the two
vertical lines in the plots. One can easily see that
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and this inequalities work especially well in the vicinity ✓ = 90o because
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(⌘ = 0)| = 0. (25)

Therefore we can conclude that the dominant contribution will arise from the amplitude A++ which
describe the production of glueball with � = ±2.

The values of the couplings for the possible glueball state are not known. We will assume that glueball
is strongly coupled with the gluon wave function and the value of the gluon couplings are of the same
order as the quark coupling f

q

for quark-antiquark mesons, i.e. f

g

⇠ f

T

g

⇠ f

q

(f2(qq̄)) ⇠ 100 MeV. For
the glueball quark coupling f

q

we consider di↵erent scenarios with f

q

⌧ f
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and f

q

⇠ f

g

which correspond
to small and large quark-antiquark component, respectively. Such scenario corresponds to the following
numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (26)

f

g

(µ = 1 GeV) ' 100 MeV, (27)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (28)
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Figure 3: The convolution integrals as a functions of cos ✓. The curves corresponds to renormalization
scale µ

2 = 2.7GeV2 . The area between the vertical lines corresponds to the region where |u|, |t| �
2.5GeV2 for s = 11GeV2.

In order to write the convolution integrals in the short form we used the symmetry properties of the
DA’s. The hard coe�cient function for this process have also been computed long time ago in Ref. [16].
Our result are in agreement up to general factor.
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Our result are in agreement up to general factor.

In order to make numerical estimates we need to specify models for the DAs and provide numerical
values for the low energy glueball couplings. I the following we assume that the state f2(2340) which has
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describe the production of glueball with � = ±2.
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Figure 4: The cross section as a function of cos ✓ at s = 13 GeV2 (left) and s = 16 GeV2 (right) in the
region |t|, |u| � 2.5 GeV2. The solid, dashed and dotted lines correspond to fT

g

(1GeV) = 150, 100, 50 MeV,
respectively.
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⇠ 100 MeV. For the glueball quark coupling f
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we consider the di↵erent scenarios with f
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and f
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corresponding to the small and to the large quark-antiquark component, respectively. Such
scenarios will be described by the following numerical values

f

q

(µ = 1 GeV) ' 10� 100 MeV , (25)

f

g

(µ = 1 GeV) ' 100 MeV, (26)

f

T

g

(µ = 1 GeV) ' 50� 150 MeV. (27)

The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except for flavor mixing and can be found in Ref. [20]. Let us notice that the tensor
gluon DA �

T

g

does not mix under evolution with quark contributions and therefore it describes the genuine
gluon component of the glueball wave function.

The numerical estimates show that the value of the cross section is practically saturated by the
contribution from the amplitude A

++ describing the production of a glueball in the tensor polarisation.
The contribution of the amplitude |A+�| is always about two orders of magnitude smaller for all numerical
values of the couplings f

q

and f

g

shown in Eqs.(25) and (26). Therefore we can conclude that the
contribution with |A+�| does not provide significant numerical impact. Hence the cross section is only
sensitive to the value of tensor coupling f

T

g

. This can also be seen, for instance, from the analysis of the
decay G2 ! �� which can be used for identification of the glueball state.

In Fig.4 we show the cross section as a function of cos ✓ at fixed values of energy s. In the numerical
calculations we take n
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= 3 and ↵

s

(m2
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) = 0.297. The cross section are shown for the energy values
s = 13 GeV2 and 16 GeV2. The factorisation scale is fixed to be µ

2 = 3.2 GeV2 and µ

2 = 4 GeV2,
respectively. The values of cos ✓ correspond to the restriction |t|, |u| � 2.5 GeV2. We obtain that for
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Figure 4: The cross section as a function of cos ✓ at s = 13GeV2 (left) and s = 16GeV2 (right) in the
region |t|, |u| � 2.5GeV2. The solid,dashed and dotted lines correspond to f
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Figure 5: Comparison of the glueball cross section (the dashed line is the same as in Fig.4 but scaled by
factor 4 ) and data for the ⇡

0
⇡

0 cross section for s = 13 GeV2. The data are taken from Ref. [19]

The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except the flavor mixing and can be found in Ref. [17]. Notice that the tensor coupling
does not mix with the quarks and therefore it describes genuine gluonic component of the glueball wave
function.

With the described scenario one finds that the value of the cross section is practically saturated by the
amplitude A++ describing the production f2 in the tensor polarisation. The contribution of the amplitude
|A+�| is always about of two orders magnitude smaller for all numerical values of the couplings f

q

and
f

g

shown in Eqs.(26) and (27). Therefore one obtains that |A+�| in such case can not provide significant
numerical impact. If such scenario is close to reality then the cross section is very sensitive to the value
of tensor coupling f

T

g

. In addition this can also be seen from the analysis of the partial wave analysis of
decay G2 ! ��.

In Fig.4 we show the cross section at fixed values of energy as a function of cos ✓ for three di↵erent
values of the gluon coupling f

T

g

(1GeV). We show the cross section for two values of energy s = 13
and 16 GeV2.For the renormalisation scale we use µ

2 = 3.2GeV2 and µ

2 = 4GeV2, respectively. In the
numerical calculations we take n

f

= 3 and ↵

s

(m2
⌧

) = 0.297. We consider only such region of values for ⌘
where |t|, |u| � 2.5 GeV2. We find that the values of the cross section in case f

T

g

(1 GeV ) ' 100 MeV is
11� 17 GeV6

nb. In Fig.5 we show the glueball cross section for fT

g

(1 GeV) = 100 MeV and s = 13 GeV2

in comparison with the cross section data for �� ! ⇡

0
⇡

0 for s = 13.3 GeV2. The data are taken from
Ref. [19]. For convenience the glueball cross section is multiplied by factor 4. Therefore a measurement
of �� ! G2⇡

0 cross section requires larger luminosity which, probably, can be achieved in BELLE II
experiment.
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Can one measure the cross section in BELLE II?

instantaneous luminosity 
of 2.11x1034 cm–2 s–1.

e+e- asymmetric collider

KEKB

SuperKEKB instantaneous luminosity 
 of 8x1035 cm–2 s–1

larger by a factor 40

The ambitious goal is to accumulate an integrated luminosity of 50 attob–1 (10-18) by the mid of 
next decade, which is 50 times more data than the previous Belle detector acquired
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Figure 4: The cross section as a function of cos ✓ at s = 13GeV2 (left) and s = 16GeV2 (right) in the
region |t|, |u| � 2.5GeV2. The solid,dashed and dotted lines correspond to f
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Figure 5: Comparison of the glueball cross section (the dashed line is the same as in Fig.4 but scaled by
factor 4 ) and data for the ⇡

0
⇡

0 cross section for s = 13 GeV2. The data are taken from Ref. [19]

The evolution of these coupling is the same as the evolution of the corresponding coupling for the tensor
meson f2(1270) except the flavor mixing and can be found in Ref. [17]. Notice that the tensor coupling
does not mix with the quarks and therefore it describes genuine gluonic component of the glueball wave
function.

With the described scenario one finds that the value of the cross section is practically saturated by the
amplitude A++ describing the production f2 in the tensor polarisation. The contribution of the amplitude
|A+�| is always about of two orders magnitude smaller for all numerical values of the couplings f

q

and
f

g

shown in Eqs.(26) and (27). Therefore one obtains that |A+�| in such case can not provide significant
numerical impact. If such scenario is close to reality then the cross section is very sensitive to the value
of tensor coupling f

T

g

. In addition this can also be seen from the analysis of the partial wave analysis of
decay G2 ! ��.

In Fig.4 we show the cross section at fixed values of energy as a function of cos ✓ for three di↵erent
values of the gluon coupling f

T

g

(1GeV). We show the cross section for two values of energy s = 13
and 16 GeV2.For the renormalisation scale we use µ

2 = 3.2GeV2 and µ

2 = 4GeV2, respectively. In the
numerical calculations we take n
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= 3 and ↵
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) = 0.297. We consider only such region of values for ⌘
where |t|, |u| � 2.5 GeV2. We find that the values of the cross section in case f
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11� 17 GeV6
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0 for s = 13.3 GeV2. The data are taken from
Ref. [19]. For convenience the glueball cross section is multiplied by factor 4. Therefore a measurement
of �� ! G2⇡

0 cross section requires larger luminosity which, probably, can be achieved in BELLE II
experiment.
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Conclusion
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