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Effective Field Theories

Effective Field Theory:

>
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v

low-energy theory of some "fundamental” theory

external momenta much smaller than some high-energy scale: p < Mep

the S-matrix calculated in an EFT is an expansion in the powers of Q = p/ Mg
the degrees of freedom (DOFs) # those of the underlying theory

fundamental symmetries constrain the dynamics of the EFTs

a finite number of parameters (LECs) arises at each order; their values are found by matching with the
fundamental theory or from experiment

counting rules tell what order is to be assigned to a particular graph
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Pionless Nuclear EFT

» high momentum scale ~ m,: p < my, E < 20 MeV for NN
> contact interactions (with derivatives) =—> delta-functions

B K X

CON' N C‘gNTV~N Cl(V“N)'V“N
Weinberg (1990), Kaplan, Savage, Wise (1998), Kong, Ravndal (1999), ...
Beane, Bertulani, Cohen, Hammer, Higa, Gelman, van Kolck, Phillips, Rupak, ...
reviews — Bedaque, van Kolck (2002), Epelbaum (2006)

» loops divergent (couple to arbitrary high momenta)

B - X XX

» need to regularize and renormalize

» can be done along quantum field theory lines (order-by-order)
» or use a formfactor and solve the Schrédinger equation Kirscher (2009)
— potential iterated to all orders, one has to make sure higher order corrections are small!
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Aims

build a potential model based on a pionless EFT (similar to Kirscher (2009))
calculate NN phase shifts, NN, NNN, and NNNN binding energies

potential model gives wave functions that can be used to calculate other observables (e.g., charge radii)

study correlations between (some of) these observables
investigate the regulator (cutoff) dependence and the related limitations of the approach

we work at NNLO; the expansion parameter Q ~ 1/3, hence the expected accuracy is ~ Q® =3%

> we can expect that denser systems are harder to describe (e.g., *He vs. 3H or 3He)

we can also expect that short cutoffs can cause a lot of trouble Scaldeferri (1996), Phillips (1996)
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NN interactions

» counting for systems with large S-wave scattering lengths

> terms up to p?:
0
(_1) NLO (@9)
7C1+Czo',-o'/+D1q + Dok® + o - o (D3q” + Dyk 2)+ Ds (oo~ q x k

+D5(q - 0))(q - o)) +Dlk=sk=T)) ,
N e

NNLO (Q1)

q=p;—p . k=(p+Pp))/2
> r-space:

Vj =G(r, o) (A1 + ApTi - -r,) +r2G(r, o) (A3 + Ay - -r,-) + {v? a(r, a)} (A5 + AgTi - -r,-)

(2)
+ G(r, o)Ay (1 — - T,-) [3(? co)(F- o) — (o o,)} ,

2
G(r, o) = exp (— 5 —2) withr = [r| = |’i - rj‘, and A; are linear combinations of C; and D;.
o

» include the Coulomb interaction
C Qem

r
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NNN interactions

> atLO (O’1 ), there is only one NNN contact interaction Bedaque (2002), Epelbaum (2002); we choose
LO
Vi = Eq (4)
> NLO (OU) terms take into account the dependence on NN scattering lenghts; absorbed in the LO piece
> terms up to p? Girlanda (2011):

NNLO (Q)

>
Vi = q; (Fw +Feri T+ F3oj-oj+ Fyop- oy "'j) +[3(¢1i co)(qi o7 5 + FeTi- 7))

+s(oi+o))-q; F7 + Fgrj - 7) + (kj - o) (K= 1077 7))

2

» non-S-wave interactions are suppressed compared to the NN case Griesshammer (2005)

nuclei under study — 3H, 3He, “He — are largely SU(4) symmetric with a space symmetric ground state,
hence Fy 4 are equivalent, and we can choose

NNLO 2 2 2
Vik = Fi(q; + a7 +d) . (6)
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NNN interactions

» r-space — LO+NLO NNN potential:
1 2 2, 2 1 2 2, 2
Vi = {81 + 82? (rf]- + I + rjk)] exp (—ﬁ (r,j +ry + f/k)) (7)

> CSB NNN force needed to renormalise the pp Coulomb interaction (counted as aemM/my ) Vanasse (2014)
» we include the Coulomb, hence we will also include the CSB NNN force:

1
CSB 2 2 2
Vppx = Bcsp exp (— 252 (r,v/ + g + ’/k)) (8)

» changes the strength of the LO NNN interaction if any two of the interacting nucleons are protons
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Strategy

> we have seven parameters A; 7 in the NN potential and three parameters B, .2, Besp inthe NNN potential

observables we want to fit at this order:
_ . pn n pn pn
NN: aﬁ) ag ws ’ 35 “
— NNN: E( H), E( He)
> P-wave phase shifts are of higher orders and have to be small

— constraints: Born scattering amplitude is zero at a small finite momentum k = 0.4 fm~" in all P-waves
(1] Vizo [¥1) = (¥1] Vi=t [1h1) = 0. (9)

— no tensor interaction in / = 1 state, hence all triplet P-waves are the same at this order

» strategy:
— fit NN potential to the NN data
— take By arbitrary, B fit to triton energy, Bcgg fit to 3He energy
— correlation lines
» investigate how the parameters of “He (and three-nucleon parameters other than energies) flow along these
correlation lines
» methods:

— two-body: Kohn Variational Method Kohn (1948), Miller, Jansen op de Haar (1987)
— many-body: Stochastic Variational Method Varga, Suzuki (1998)
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Stochastic Variational Method

» based on a stochastic trial algorithm

> can be expressed in a Gaussian basis

» easily scalable and accurate

> best for ground states — excited states need extra care

Hamiltonian of N nucleons

Nop2 N N
H=T4 V=3 o+ Vi =)+ > Vilri—rre—n)
i=1 ! i<j i<j<k

Trial function

wa'L/_s/ (A, uj, Ki)>

[Wo) = Z Gl => ¢

Basis functions for the system of N nucleons:

e o 7 o
wJJZLs(Av u, K)> = Z CLMSSZ “KLM)A,U ‘Xssz>
M,Sz

1 .
XY famday = fram({x}, A, u) = vy y(v) exp (— EA”X,-TXJ-)

- {x} ={x;,i=1,...,N — 1} are the Jacobi coordinates
— Ais a symmetric positive-definite (N — 1) x (N — 1) matrix

= Yim(v) = vEYiu(P), with v = 3, ulx;

— the "direction vector" u = (ui, i=1,...,N— 1) encodes angular dependence of the w.f.
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Stochastic Variational Method

vvyyvyy

vy

we look for the lowest eigenvalue Ej of the generalised eigenvalue problem
Hig = ENlg;, ij=1,...,m, (13)
where H and N are the Hamiltonian and overlap matrices in the current basis,

Hi — <’1;‘), "/> s NI = <z;“),'

N is not a diagonal matrix since the basis states are not orthogonal

(14)

in a Gaussian basis with Gaussian potentials, H;; and N; are easily expressed algebraically via A, A1y,
and other parameters of the w.f.

1 .
O o = ({3 A1) = V¥ () oxp (S ATx]x; ) (15)

A1 positive definite — can be inverted efficiently (e.g., Cholesky decomposition)

a single state is added — a very efficient method for solving the eigenvalue problem with m + 1 basis states
efficient trial strategy: adding one state after another

can lead to very large basis sizes — basis refinement (time to time, remove states that are less useful)

typical times on a regular PC: 0.5..2 hours for 3N, 3..18 hours for 4N
can be parallelized
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Two nucleons: NN potential

Vj =G(r, o) (A1 + Agry - -r,-) +2G(r, o) (A3 + Ay - 1-,-) + {vz, Ga(r, n)} (A5 + AgTi - -r,-)

+G(r,o)A7 (1= 7 7)) [3(F- o) o)) = (o

> solve the Lippman-Schwinger equation;
> fit A; to the data:
& = —23.75fm, & =5.42fm,
So S
P

s 1
€1 = 1.1592° at Ty, = 10 MeV

= 2.81fm, rgg =1.76 fm,
+ the P-wave constraints

5 parameters, 5 numbers to fit

works fine at soft cutoffs

issues expected (and seen) at short cutoffs o < 0.6 fm

vvyyy
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Two nucleons: phase shifts

d [rad]
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o

vvyyy

v
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shown at o = ,0.8,1.0, 1.2 fm, in comparison with PWA93

works well up to Tz, ~ 20MeV

3 S phase shift is very well reproduced at all energies

deuteron bound state is at the right position too

L L L L L -4
2 03 04 05 06 07 08
Kk [fm™

Range o [fm]
Energy [MeV] —2.207

0.8 1.0
—2.207 —2.204

1.2
—2.198

exp.
—2.224

P-wave phase shifts are well constrained (again, hints of possible issues at

8D, phase shift is not constrained but is small at low energies

— it works well for NN!
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Three and four nucleons: correlations

v

fit By and By so that

E(®H) = —8.48 MeV

correlation lines

3H is underbound by NN forces only

different o’s:

— very different scales of By and B,

— yet similar LO and NLO NNN
contributions to the g.s. energy
(below)

3H — *He correlations:
— analogy of the Tjon line
(no CSB NNN forces included yet)

o = 0.6 fm blows up in *He:

— gigantic LO NNN contribution

— cancellation with NLO NNN
cannot be expected to occur!
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— o = 0.6 fm is too short to work!

— we don’t consider it in the following
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Three and four nucleons: CSB NNN force

» no CSB NNN force included here

=7.70
> both 3He and *He are overbound (the former only % x
slightly) S 775
> fit CSB NNN force to reproduce g
E(®He) = —7.718 MeV W
— can be done perturbatively = — 5 —5 —

> “He energy is shifted up too
— still slightly overbound

10015

5 0.010}

B1[fm ™ B1[fm™]
> linear correlation between Bcgg and By
» CSB NNN force is very small (about 10% of the LO NNN force)

» 3He - *He correlation picture is uninformative (E(3He) fixed)
> ook at other observables, namely, charge radii, to identify NNN parameters that give close-to-physical results
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Three and four nucleons: charge radi

» with the SVM wave function, it is easy to calculate charge radii:

2,2

2 o q-r;
Felq ): S <+q/2\ Lo@-a/2) . Fe(d)=1- T“h +o (17)
> LO (@ 9) result:
1 A4 3 N 2
2 _ 1 I 2 2 N
= (‘Uo\g 5 (1 7a)1j Vo) +1p + 5 + > 17 (18)
Z protons and N = A — Z neutrons
rp = 0.8751 fm — proton charge radius, r,2, = —0.1161 fm?® — neutron charge radius squared

no corrections at NLO (Q')

NNLO (Q?): relativistic corrections

— Foldy correction; vertices and propagators recoils
— dimensional estimate: 61, ~ C/M ~ 0.01 fm
— very small for the deuteron Chen (1999)

— estimated by calculating vertex recoils: 5, < 0.003 fm for “He, even less for 3H, SHe

> two-nucleon contributions start at N°LO (03) Valderrama (2014)
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Three and four nucleons: charge radii correlations

Les ! ! oy ! ! ! !
T 180 E 2.0

Ts == o)

T E

= 10 ]

1.70
, L , | L ,
155 1.60 1.65 170 155 160 165 170
r(*He) [fm] r(*He) [fm]

3H charge radius is in agreement for all NNN potentials
3He charge radius is somewhat larger, in particular at the point where r,, (*He) = f}:‘p(“He)

3He discrepancy never larger than 2 std. deviations

vvy VvYYy

cutoff dependence of 3N charge radii is very small (less than 2 % effect)

> rch(4He) decreases with increasing binding energy
(as expected)

> the residual cutoff dependence of E(4He) gives an
uncertainty estimate of 0.5..1 MeV

> at the point where e, (“He) = rx*(*He), alpha is

overbound by ~ 0.5 MeV

155 1.60 165 170
> this is about 2% of the binding energy and within the r(*He) [fm]
expected uncertainty
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Summary and outlook

vYyy

model gives excellent agreement with experiment for A = 3 nuclei

CSB NNN corrections are very small

study of correlations:

there is also a range of parameters where both A = 3 and A = 4 nuclei are in agreement

short range cutoffs cause a lot of trouble, more so in denser nuclei, especially “He
working on heavier nuclei (parallelization is essential)

we used SU(4) symmetry to limit the number of NNLO NNN parameters

will not in general work for heavier nuclei

need to study scattering of nucleons by the deuteron and A = 3 nuclei
combine Kohn variational method and the SVM
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